Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces.
نویسندگان
چکیده
Force magnitudes have been suggested to drive the structural response of bone to exercise. As importantly, the degree to which any given bone can adapt to functional challenges may be enabled, or constrained, by regional variation in the capacity of marrow progenitors to differentiate into bone-forming cells. Here, we investigate the relationship between bone adaptation and mesenchymal stem cell (MSC) responsivity in growing mice subject to exercise. First, using a force plate, we show that peak external forces generated by forelimbs during quadrupedal locomotion are significantly higher than hindlimb forces. Second, by subjecting mice to treadmill running and then measuring bone structure with μCT, we show that skeletal effects of exercise are site-specific but not defined by load magnitudes. Specifically, in the forelimb, where external forces generated by running were highest, exercise failed to augment diaphyseal structure in either the humerus or radius, nor did it affect humeral trabecular structure. In contrast, in the ulna, femur and tibia, exercise led to significant enhancements of diaphyseal bone areas and moments of area. Trabecular structure was also enhanced by running in the femur and tibia. Finally, using flow cytometry, we show that marrow-derived MSCs in the femur are more responsive to exercise-induced loads than humeral cells, such that running significantly lowered MSC populations only in the femur. Together, these data suggest that the ability of the progenitor population to differentiate toward osteoblastogenesis may correlate better with bone structural adaptation than peak external forces caused by exercise.
منابع مشابه
Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملTherapeutic Potential of Mouse Bone Marrow Mesenchymal Stem Cells in Carbon Tetrachloride (Ccl4)-Induced Liver Fibrosis
Purpose: To study the effect of allogenic bone marrow mesenchymal stem cells (BMMSCs) transplantation on carbon tetrachloride-induced liver fibrosis in mice. Materials and Methods: Fifty five female NMRI mice were divided in 5 groups, and to induce liver fibrosis CCL4 intraperitonealy was injected 1ml/Kg twice a week for 8 weeks 106 allogenic BMMSCs were infused in cell therapy group via tail v...
متن کاملGrowth Kinetics and in Vitro Aging of Mesenchymal Stem Cells Isolated From Rat Adipose Versus Bone Marrow Tissues
Objective- To investigate and compare growth potential as well as aging of mesenchymal stem cells (MSCs) derived from rat bone marrow tissue and adipose tissue (AT) occurred at epicardial and epididymal regions. Design- Experimental study. Animals- 10 Wistar Rats. Procedures- Rat MSCs occurred at bone marrow and epicardial and epididymal AT were isolated and culture expanded through sev...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 19 شماره
صفحات -
تاریخ انتشار 2015